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ABSTRACT (UNCLASSIFIED)

The tracking problem of unknown marine platforms using passive sonar

measurements is generally referred to as Target Motion Analysis (TMA).

This report describes the application of a Maximum Likelihood Estimation

(MLE) method to obtain position and velocity estimates of a platform

when bearing angle and frequency measurements are available from a

passive sonar system. The frequency measurements are related to one or

more cardinal frequency peaks from the radiated frequency spectrum by

the platform.

The MLE method offers the opportunity to use a multi-leg model, i.e. the

platform to be localized is assumed to move according to a piecewise

linear track, where each part is referred to as a leg. On each leg

constant course and speed is assumed. Additionally, bearing and

frequency measurements related to bottom reflections of the acoustical

signals can be used. -

In ref. [Gmelig Meyling, 1989-1] a Newton-type optimization method using -

first and second order derivative informatioi of the residual functions 0

is proposed. By using the analytic expressions of the derivatives as 0

decribed in this report a major reduction of computation time is

accomplished. I lstr but-,
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SAMENVATTING (ONGERUBRICEERD)

In het algemeen wordt het volgprobleem m.b.t. onbekende platforms op zee

waarbij passieve sonar metingen worden gebruikt Target Motion Analysis

(TMA) genoemd. Dit rapport beschrijft de toepassing van een Maximum

Likelihood schattingsmethode (MLE) om de bewegingsparameters van een

platform te schatten uit peilings- en frequentiemetingen die m.b.v. een

passief sonarsysteem worden bepaald. De frequentiemetingen zijn

gerelateerd aan een of meer pieken uit het door het platform uitgezanden

frequentiespectrum.

De MLE methode geeft de mogelijkheid een multi-leg model te gebruiken,

d.w.z. bet platform vordt verondersteld te varen volgens een stuksgewijs

lineaire baan, waarbij elk stuk een poot genoemd wordt. Op elke poot

vordt sen constants koers en vaart verondersteld. Tevens is het niogelijk

metingen te gebruiken die afkomstig zijn van bodemgereflecteerde

akoestiache signalen.

In ref. [Gmelig Neyling, 1989-1] is een Newton-type

optimalizatiemethode voorgesteld die gebaseerd ii op de serste en tweede

afgeleiden van de residufuncties. Esn belangrijke reduktie in de

benodigde rekentijdf vordt bereikt door gebruik te maken van de in dit

rapport beacbreven analytische uitdrukkingen voor de afgeleiden.
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1 INTRODUCTION

The tracking problem of unknown marine platforms using sonar

measurements is generally referred to as Target Motion Analysis (TMA).

This report describes the application of a Maximum Likelihood Estimation

(MI.E) method to obtain position and velocity estimates of a platform

when bearing angle and frequency measurements are available from a

passive sonar system, such as a towed array. The frequency measurements

are related to one or more cardinal frequency peaks from the radiated

frequency spectrum by the platform.

The estimation problem is formulated as a Maximum Likelihood Estimation

problem (MLE) which is both non-linear and poorly conditioned. In

literature [Lindgren 1978, Aidala 1979, 1982, 1983] much attention is

paid to the application of Kalman Filters (KF) to solve bearings-only

TMA problems. In [Nardone, 1984] the fundamental properties if the

bearins-only THA problem are discussed. An extended Kalman filter for

the bearing- and frequency measurement TMA problem is proposed in

[Ockeloen and Willemsen, 1982]. However, in many situations Kalman

filters suffer from unacceptable bias and slow convergence caused by

inappropriate linearization of the non-linear THA equations.

By using a proper numeric optimization method to obtain an ML estimate

the disadvantages of Kalman filters have been overcome at the cost of

more computational effort.

The optimization method in [Gmelig Meyling, 1989] is based on an

Corrected Gauss-Newton method combined with a Newton method and an

Active Set method to account for additional constraints on the

parameters to be estimated. The MLE approach offers the opportunity to

use a multi-leg model, i.e. the platform to be localized is assumed to

move according to a piecewise linear track, where nach part is referred

to as a leg. On each leg uniform linear motion is assumed. The multi-leg

model is described as a linear state model in Cartesian coordinates with

non-linear measurement equations. The MLE problem, however, is not

formulated in cartesian coordinates since it aims to estimate parameters
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which are used during real-time operation on board. The method also

accounts for bearing and frequency measurement equations related to

bottom reflections of the acoustic signals.

The Gauss-Newton method requires only the first order derivative

information of the residuals, whereas the Newton method also makes use

of the second order derivatives. In both methodes either finite

difference approximations or explicit analytic expressions of the

derivatives can be used. However, applying the explicit analytic

expressions leads to a large reduction in computation time, which is

much more attractive for real-time operation of the method.

This report has two objectives. First it recapitulizes the theoretical

background of the MLE method in view of the ThA problem. Second,

analytic expressions for the first and second order derivatives of the

residual with respect to the target parameters are presented. The

expressions are required by the Modified Newton Method as proposed in

[Cmelig Meyling, 1989-1].

The report is organized as follows. In Chapter 2 the TMA problem is

formulated. Section 2.2 introduces the multi-leg motion model, Section

2.3 discusses the parameters to be estimated and their relation to the

multi-leg model. In Section 2.4 the measurement equations are formulated

for both direct-path and bottom bounce propagation.

In Chapter 3 the MLE method is introduced and some properties of the MLE

are discussed such as bias and the Cramer-Rao lowerbound. In Chapter 4

analytic expressions for the residual derivatives are determined.

Readers who are interested in the results only are recommended to skip

reading Chapter 4 and just to focus on the tables of Chapter 4, which

are recapitulized in Appendix B.
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2 TMA MODEL

2.1 Preliminaries

Throughout this report the following notation is used:

Vectors and matrices are denoted in bold lower and upper case

respectively,

- Superscripts in parenthesis denote leg-index numbers.

- Variables related to own ship or target ship information have the

superscript OS or TS respectively,

Similar superscripts are used for direct-path (DP) and bottom-

bounce (BB) variables.

Two cartesian coordinate systems (X,Y) will be used where the x- and y-

axis are related to the geographical east and north. Absolute Cartesian

coordinates are defined such that the origin represents a fixed

geographical point, usually the own-ship position at the time instant of

the first measurement. The second, a relative Cartesian coordinate

system, moves along the own-ship track such that the own-ship stays at

the origin.

The advantage of Cartesian coordinates is that the absolute or relative

motions of both platforms can be described straightforward. So, the

relative uniform linear motion at time instant tk is represented by

[xk, yk, k, 5'j where xk, yk are the relative position and ',

are the relative velocity components. The variables with superscript OS

and TS are absolute position and velocity components:

- - (2.1)

Yk *O5k

- *1s *CS
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The position and velocity of the target will also be described in polar

coordinates (bk, Rk, Ck, Vk] , where bk is the absolute bearing angle

taken from the geographical north (the y-axis of the cartesian system),

k is the range between target ship and own ship, Ck is the target ship
course angle taken from north, and vk is the target ship speed at time

tk. Note that the polar position coordinates are relative with respect
to the own ship while the polar velocity components describe the

absolute velocity of the target platform. The following relations

between Cartesian and polar variables hold:

bk - ATAN2(Xk,y,)

xi + 2 ) (2.2)

Ck - ATAN2 (X S, ,TS)

-k ( TS
2  

*S
2  

;

where the ATAN2 function is defined by

[ ARCTAI(X/y) y > 0

X + ARCTAN(x/y) y < 0, x > 0

ATAJ2(x,y) - -*+ M=cz (x/y) y < 0, x < 0 (2.3)

x/2 y -O, x > 0

-- /2 y -0, x < 0

Figure 2.1 illustrates the definition of the position and velocity

parameters just described.
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YTS
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I \ 0R k
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kX
I I

i I > East

Fig. 2.1: Position and velocity variables at time tk

2.2 Multi-Leg Model

The purpose of TMA is to estimate the position, velocity and frequency

parameters of an unknown platform from a set measurements (zk) at

measurement times (tk). The measurements consist of bearing angles and

frequency measurements from the sonar system, which can be obtained from

direct path or bottom bounce trajectories to the targetship. Moreover,

measurements about range, speed or course of the platform can be added

to the set. In the following we assume piecewise uniform linear motion

of the taraet ahip (TS) and known position and velocity of the own ship

(OS).
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The TS motion can be described by the following difference equations in

cartesian coordinates:

TS T + Z ()T'

(2.4)

y yTS TS~
YN ~ ~ y v' kT'

where v~i, VM1 are the absolute velocity components of the target
2 y

ship which are assumed to be constant during leg i. The total number of

legs is equal to m:

-TS M

Vk: VW , i - 1 m (2.5)

where r~i1" and rc' indicate the beginning and end time of leg i, for

i - 1,..m. In this report the manoeuvre rMt of the target ship are

assumed to be known, i.e. these values may be obtained by a manoeuvre

detection procedure. The time periods T(') are defined as
N,k

-,'k iax(TM~ - tk )+mxf 1~ - tp, 0)

- a(~~ - tp, 0) - max(tf 1  
- t.k, 0)(26

The weuli-leg track is illustrated by Figure 2.2.
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Fig. 2.2: The multi-leg model.

The multi-leg model is determined by the following discrete-time state

equation:

N "N,A (2.7)

where

T- x V
8  y) V1.........~ V(M ]~)T (2.8)

Xk 7 Yk z
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1 0 T"1) 0 T(2) 0 . T m  0
Nk N,k . . k

0 1 0 T'
)  

0 T
2 ) . 0 Tcm)

N,k -,k N,k

0 0 1 0 0 0 ..... 0 0

0 0 0 1 0 0 ..... 0 0

-k 0 0 0 0 1 0 ..... 0 0 (2.9)

0 0 0 0 0 1 ..... 0 0

0 0 0 0 0 0 ..... 1 0

0 0 0 0 0 0 ..... 0 1

If the model contains m legs the state xk contains 2(m+l) variables

which have to be estimated. Additional to these variables we also like

to estimate q unknown source frequency variables fM' foz ..... fog,

These variables are assumed to result from cardinal peaks in the

frequency spectrum of the target platform. The corresponding frequency

measurements contain a doppler shift caused by the radial motion

components of OS and TS. Section 2.3 discusses the corresponding

measurement equations in detail. A frequency measurement related to time

tk and source frequency j will be denoted by fkj"

The state equation (2.7) is now expanded by q additional equations:

foj(t 5 ) - foj(tk) Vk (2.10)

The result is a 2(m+l)+q dimensional state vector

Xk (1) v")' v(M) v(M) fo iT ( .1
N y x . X y a l..... f Oq

and a transition matrix

JL
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12 T(1)I 2  . ... T -1 2  
0

2,q

S01(2.12)N .k" 02-,2 1230m

Oq02 I 0q,2 I q

where I. and 0 ,n indicate a n x n identity matrix and a m x n zero

matrix respectively. In the sequel of this report we will mainly use "k,

which is the inverse of 0 N,k' i.e. T ) 
- -T

( )
N~k -k.N '

2.3 Polar coordinates

For operational usage it is more convenient to use relative polar

position coordinates and absolute polar velocity coordinates per leg. We

introduce the polar state vector as

yk- [ bk % CM vG) ...... vCM) v(M f0 . .fq (2.13)

with bk the absolute bearing angle, Rk the range, C('), v(') the Course

and Speed of the platform at leg i and f0j the jth source frequency.

The transition from Yk to YN can be determined by using the vector

transformation function F: x - y and its Inverse G: y - x

- F (Xk ) (2.14)

• - G(yk)

The transformations F and G are determined by
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F bt - ATAl12(X,y)

C()- ATA2 (V-1  
(.5

vM-(( 2 + )
2 

&I

f -f

G xk -Rk-si b k

yk - Rk *Cos b k

v(i) i)S ()

f -f

Note that the own-ship position xos, yos is used implicitely by the

functions F(z1) and G(y k).

The transition from y,, to ykand vice versa is now determined by

Y- P(OI1 ~kG(yk)) (2.16)

Note that the own ship position are assumed to be known in order to be

able to carry out the transformation.

2.4 Measurement Equations

The set of measured data generally consists of bearing angles and

frequency data which result either from a direct acoustic path (DP) or

from bottom bounce reflections (BB). The acoustic path is assumed to be

known, e.g., by using an acoustic propagation prediction model.
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Moreover, note that the multi-leg model does not take account of

variations in depth. Other type of measurements such as range, course

and speed of the target may be exploited (see Section 2.4.2). These

measurements may be available from other platforms or from information

about the underwater sound propagation conditions. Section 2.4.1. deals

with typical passive sonar measurements.

2.4.1 Direct path and bottom-bounce measurements

In case of direct path acoustics the equations describing the measured

bearings and frequencies are relative simple

b k + bz b k k (2.17)

f

z-f fk + vf

where bk is defined by (2.2) and f is specified by the following

relation:

fkJ f - f (2.18)

The scalar c represents the sound velocity in water (1500m/s) and

is the range rate (the relative radial velocity component) at time tk.

The measurement noise is represented by Gaussian noise processes Vb and
k

vf with normal distribution functions N(0,ab) and N(O, f
hi kii

The second term of the right-hand side in equation (2.18) is an

approximation of the doppler shift. Here we have assumed that the

measurement noise vuf has a larger magnitude than the approximation

error of the doppler term. Moreover, equation (2.2) and (2.18) only hold

in cases where the OS and TS do not differ in depth. In case the target

and the own ship in reality move in different horizontal planes or the

bearing angles are related to bottom bounce reflections, the line of

might is projected onto a horizontal plane. Figure 2.3 illustrates the

underlying model for the direct-path and bottom-bounce measurements. The

elevation angle 0 depends on the range and the difference in depth D

between TS and OS. The constant D is either equal to the real difference

WL_
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DDF or to the apparent difference in depth D., in case of direct path or

bottom bounce signals, respectively:

DDP -Ds Dos (2.19)

D B - 2DDR D T~S - Do0s

where DDP. D., and D, are the target ship depth, the own ship depth and

the sea depth. In most long-range cases the difference DTS -Dos is

negligible. The measured absolute bearing angles b
0p and b81 are obtained

from:

DP- COs + DP
k k k

k k 
(2.20)

where kP or BB is the angle between the projected line of sight and

the OS course as measured by the towed array sonar. Ok and PBE

depend on the elevation angle 4b. If a0 D and an are defined as the cosine

of the elevation angles 4OD and OBB respectively,

R

QD
P 

-
R

C O S - D -s ( R + D .2 ) ll ( 2 .2 1 )

(R2+D)h

then the bearing angles Ok and kare equal to

- Ac= ( a k C O S, ,. le dw P k <  0

(2.22)

kk- ARCOO(Cin M Od) - W, S k < 0
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where Pk represents the actual azimuth of the TS with respect to the OS

course:

b k - +k (2.23)

In case of large range values the difference in depth DTs-DOS can be

neglected. The result is that bDP becomes equal to bk of (2.15).k

When receiving bottom-bounce signals the frequency measurements will

have a different doppler component compared to the direct-path case. The

relative radial velocity between TS and OS is represented by L. The

doppler shift is proportional to the projection of i on the bearing

line of the BB bearing angle:

jDP _ j COS 0", _ kDP j (2.24)

rn' . i COSine - Mn r (2.25)

The result is

fDP (1_Drk

fan - rfJ foa(l - cs, ) (2.26)

where f0i is the source frequency and c is the sound velocity.

In case of bottom-bounce the measurements are denoted by

b + b
k k Vk (2.27)
Z- fan + ,f

kJ ki kJ

where vb and f are Gaussian noise processes as defined above.

S kj



TO rtport

Page
18

SURFACE

JDOS RJDT

'EBB kD DD

DB TS_

SEA BOTTOM DBB

REFLECTION
POINT '

Fig. 2.3: Bottom-bounce bearing and frequency measurements.

Note that bk and fk in (2.20, 2.22) and (2.27) reduce to simple

range independent forms if the difference in depth DDP between OS and TS

is assumed to be zero. Moreover, if the angle between the line of sight

and the towed array is 90 degrees one cannot distinguish DP from BB

situations.

2.4.2 Additional measurements.

The additional measurements about range, course and speed are denoted by

ZkR - Rk+ VkR
zC(i) . cM + C  

(2.28)
kk

where v - N(0,v), &c N(o,oC) and v - N(O,oe) are Gaussiankhr ~NOot) k  k k

noise processes.

, 3k
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3 MAXIMUM LIKELIHOOD ESTIMATION

3.1 TMA formulated as an MLE problem

This Section deals with the formulation of the general TMA estimation

problem assuming Gaussian distributed measurement noise. Suppose the

vector y. must be estimated from the measurement set Z. which contains

all types of measurements zk discussed in Section 2.4. Let's denote zk

as the variable to be measured at tk:

Zk- h k(yk)

zk -Z (3.1)

ZN - (zk, k- I.Ni

where v; denotes the Gaussian noise process N (0,6:) corresponding to

zk as defined in Section 2.4. The type of the function h k(yk) depends on

the measurement type at time tk, i.e. hk is defined by (2.20) through

(2.23) in case of a bearing measurement or (2.26) in case of a frequency

measurement. The a posteriori probability density function is denoted by

p(y 3.1). The maximum a posteriori (MAP) estimate is found for y, - YNIN

such that p(y.1Z) attains its maximum value. Using the Bayes rule and

taking the logarithm leads to

LE P(YIZ) - iN P(ZEIYE) + ' P(Y,) - iN P(Z) (3.2)

Since the last term does not depend on y. the MAP estimate can be found

by minimizing the function

l(Y,) - -. P(ZIY,) - N P(Y,) (3.3)
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where the last term represents the a priori knowledge on ys.

If there is no a priori knowledge the MAP estimate reduces to the

maximum likelihood estimate, i.e. the last term of (3.3) is constant

when p(y.) is a uniform probability density function. Note that when a

priori knowledge is regarded as an additional measurement which also has

Gaussian statistics the MLE problem is in fact a special case of MAP

estimation.

The MLE problem is formulated as

min -zx p(Z Oyd) (3.4)
Y,

Since the measurements in Z. are assumed to be uncorrelated and

distributed according to N(O,ak), i.e.

p(zl - ( _h ) (3.5)
S2)0

The likelihood function p(Z5Iy) can be expressed as

N

p(Z'Iy') - p(z 1 ..... z'1y) - k p(zkIy3 )
k=1

- f p(zkjz ) (3.6)

The negative log-likelihood function becomes equal to

-LA p(ZM5 yJ) - t(Zy 3 ) + LN (z1)" + EN Na (3.7)

k-1 k
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where 1(y.) is equal to

J(Zy)- (...L...) (3.8)
k-1i U

In the following the weighted residual rk(y) is defined as

r kOy Zk -h k( (3.9)

ak

Further we denote the estimate of Yk and z: based on Z. by yil and zkjN

respectively. Now the MLE problem is reformulated as a non-linear

optimization problem:

min '(Z 1,Y'15 ) (3.10)

A necessary condition for obtaining the ML estimate is

aye'sl

which leads to

S(Y~lN) - E r k .' (3.11)
k.i

However, since the equared terms are non-linear in y,, we have to use

numerical methods to solve the MLE problem.
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3.2 Numerical methods

In this section, only the outline of the Gauss-Newton and Newton method

is given. Extensive details can be found in [Gmelig Meyling, 1989-1].

The Newton method uses the gradient g(y,11 ) related to some estimate y,,,

to obtain a better estimate in the sense that the objective function

J(Z.5,y.1) has a lower value than I(Z3,y 11).

The Newton method assumes a local quadratic behaviour of the objective

function, i.e. the function is written as a Taylor series expansion of

two terms:

g(y + a) _ I(y) + g(y)Ts + 1 sTG(y) a (3.12)

where

821(y)
G(y) - Y al~)(3.13)

(See Appendix A for details on vector/matrix differentials).

The minimum of the right-hand side is obtained if s satisfies

G(y).s - -g(y) (3.14)

s is referred to as the Newton direction.

By defining the N dimensional vector f(y) containing the residuals

rk(Yk), k - 1,... N and the N x n Jacobian matrix J by

f(y) - [r1 (y), r2(y) ....... rN(y)]T
(3.15)

Jo - f(y)
J(Y) MY

ay

S(y) and G(y) are rewritten as
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g(Y) _ J(Y)f(y) (3.16)

G(y) - j(y)
T
j(y) + Q(y)

where Q(y) is equal to

0 8
2
rk(Y) (3.17)

Q(y) - Z rk(y)k-i yy

The Newton direction is found by solving

(J(y)TJ(y)+q(y)),s- -J(y)'f(y) (3.18)

In order to find a descent direction the matrix G must be positive

definite. However, when the residuals are large G is not guaranteed to

be positive definite because of Q. A better alternative is to neglect Q.

Since jTj is positive definite, except in special cases where dependency

between elements of y. occurs [Omelig Meyling and de Vlieger, 1989], s

is guaranteed to be a descent direction. This method is referred to as

the Gauss-Newton method. A numerical robust way to solve (3.18) is to

use a singular value decomposition (SVD) of J(y):

J(y) - U E VT  (3.19)

where U is a N x n orthogonal matrix, E a n x n diagonal matrix and V a

n x n orthonormal matrix. The diagonal of Z contains the singular values

of matrix J in descending order:

E - DIM[ 1  ..... an , Oa +1  (3.20)

Moreover the following relations hold:
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VTV - VVT -UT - 1

J - V Z2V4 (3.21)

(jTj)- _ V E 2VT a1 > 0, i-1 ..., n

The matrix V contains the eigenvectors of JTJ and the squared singular
values a 2through 0

2 are the eigenvalues of j
Tj. Note that if J does

not have full rank one or more singular values will be zero and a pseudo

inverse of jTj must be used in determining a search direction, i.e. the

search is performed in a lower dimensional space. In fact the SVD

decomposition accounts for the bad conditioning of the TMA problem. When

some singular values are much lower than others one can cancel those

directions corresponding to the small singular values [Gmelig Meyling,

1989]. Bad conditioning is related to measurement noise and geometry of

the own ship and the target ship tracks.

The outline of a Newton-type optimization method is as follows:

1. Start with an arbitrary estimate y for i-l

2. Determine a search direction s (Newton or Gauss-Newton) by

solving equation (3.18).

3. Perform a line search along the direction s

4. Check convergence criteria. If not satisfied increase iteration

counter i and goto step 2.

5. Calculate the inverse of G which is an estimate of the error

covariance of the maximum-likelihood estimate y w - y

Details on Newton-type methods can be found in [Gill, Murray and

Wright]. Specific details on Newton-type methods for THA problems are

described in (Gmelig Meyling].
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3.3 Unbiased Estimates and the Cramer-Rao lower bound

The estimation error e(Z) is defined by

e(Z) - Y) (3.22)

Any unbiased estimation of the parameter vector y,, is characterized

by

E(e(Z)Iy1 ) - JZ e(Z) p(Zly N)dZ - 0 (3.23)

where E(ety) denotes the mathematical expectation of e knowing y. If we

consider y,,, as an biased estimate of y. with bias A (YN) the expected

value can be written as

E(e(Z)ly,) - A(y,) (3.24)

Differentiation with respect to y. leads to

f o (Z) a N8ZY,) p(Zly1)dZ - ID + 8y,5 (.5

Now the error covariance matrix A. is defined as follows

A*- fe(Z) - )A(y5)Ite(Z) - (.6

The vector 8Ls(p(Zjy,))/8y, is a stochastic vector with expectation equal

to zero and a covariance matrix equal to the matrix N:
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N -E( [PYe )[LPIe) I

-
2
ui p(ZIY 5) 

(3.27)
E -E{ YIY I Y,

aymay T

The n x n matrix M is called the Fisher information matrix. The Cramer-

Rao theorem (v,Trees, Eykhoff] states that for any unbiased estimate of

Y,,, the following inequality holds (see appendix C):

A ; M-' (3.28)

The meaning of this theorem is that for each unbiased estimate the error

covariance matrix has a lower bound, which is the inverse of the Fisher

information matrix. The lower bound can be determined exactly if the

real target state y. is known. When Monte Carlo experiments are used to

show the performance of the MLE method it is thus possible to determine

the lower bound. When the estimation method is efficient the error

covariance matrix is equal to the lower bound. The error covariance

matrix can be either estimated from the Monte Carlo simulation results

or by using the matrix (J(y,5 ,)TJ(y15 )+Q(y 1 ,))
-
'. The estimated error

covariance matrix can be compared to the lower bound in order to get an

efficiency measure of the MLE.

Using the definitions of S and G the matrix N can be rewritten as

N - E(g(y3 )g(y)Tly) - J(y,)TJ(y,) (3.29)

Unfortunately it cannot be proven that YWIN is unbiased. Moreover one is

not able to determine an analitic expression of the bias A(yf).

Experimental results in [Gmelig Meyling and de Vlieger, 1989-2] show

however that in many cases the MLE will be unbiased and one can use the

Cramer-Rao lowerbound to verify the efficiency of the MLE method.
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3.4 Quality of Fit and Confidence regions.

Given an estimate y the likelihood was defined by (3.6) and (3.8):

p(Zly) - ((21r)-I2f (OP-) =F(-U(Zy))
k-1

(3.30)

Z~Zy - Z1 -k)
k-i ak

The quantity I(Z,y) at its minimum is distributed accc ding to a chi-

square distribution function for N-n degrees of freedom, where n is

equal to the dimension of y. Suppose we have a realization ZR (a set of

measurements) and an estimate 
9
tE. Other possible realizations Z which

lead to other MLE estimates y with a likehood I(Z,y) such that

I(Z,y) > 1(ZRy
M

LE
)  

(3.31)

result in MLE solutions which do not fit the data Z as well as yME fits

ZR. Hence the probability Pr(1(Z,y)>(Z,yME) can be used as a

quantitive measure for the quality of fit of yML:

Pr(1(Z,y)>1(Z,9y)) - Q(Nin , ;1j(Z,yMLE)) (3.32)

Q(v,a) is refered to as the incomplete gamma function:

Q(xa) - ExP(-x)dx (3.33)r(v) Ja

If the measurement noise realizations resulted into realization ZR with

a low probability of occurrence the likelihood of the ML estimate will
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be low and the probability 1-Pr will indicate that there is a high

chance that someother realization would fit better. However, the quality

of fit may not be confused with the confidence in the estimate. One may

obtain a bad fit, for instance because of a bad measurement, but still

obtain an excellent estimate and visa versa.

Let's now consider all possible estimates y for which the likelihood is

larger or equal to a lowerbound a p(Z-Z5 IyM"), for 0 - a s 1:

a p(Z-ZYLERI) ! p(Z-Zly) s p(Z-Z 5 I9' ) (3.34)

Hence we select all estimates around y for which

I(Zp,y'L) :5 uk.) S I(ZR,ym ) - 2 tK a (3.35)

The set (y) satisfying condition (3.35) defines a likelihood region R in

the state space. The probability that y lies in the region R given the

measurement set ZR is:

Pr(yeRIZ-ZR) - i p(yIZ-ZR)dY (3.36)

By using the Bayes rule we obtain

p(yIZ-ZR) - P(Z-ZRIY)P(Y)
P p(Z-ZRly)p(y)dy (3.37)
Y

Note that the nominator of (3.37) is a normalization constant. The

desired probability can be calculated if p(y) is available. Remember

that p(y) represents the a priory knowledge about the target track and

that the HLE method does not account for this knowledge. The worst case

situation is at best represented by a uniform distribution:

p(y) - y-A/ oy, /2 (3.38)0 y, :S -A/2 or y, :5 6/2

Nk
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Hence, for A-w the a priori knowledge vanishes. Substituting (3.38) into

(3.37) results in a probability

Pr(yERIZ-ZR) - Pi(Z-ZRlY)dy (3.39)

Substitution of (3.30) leads to

JR El-4(ZRY) )dy
Pr(yoRIZ-ZR) - (3.40)

Jy P{(-h'(ZRY))dy

which is the probability that the real target parameters lie in a

confidence region R defined by (3.35) based on the knowledge of the

measurement set ZR. In general the boundary of R will not be an

ellipsoid because of the nonlinear behaviour of the likelihood function.

The shape of R can be found by using a Monte Carlo Integration approach,

i.e. by producing a sufficiently large number of random vectors y, which

are drawn from a uniform distribution function that fully covers the

region R, one can display those vectors y graphically that satisfie the

condition (3.35). Simultaneously one can approximate the integrals of

(3.40) numerically by using both the accepted and the rejected vectors.

The displayed points are scattered in the region R and hence show the

shape of R.
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4 RESIDUAL DERIVATIVES

The application of Newton-type algorithms implies the usage of first and

second order derivatives of the estimate zkwN With respect to the state

estimate This Chapter is concerned with the determination of these

derivatives. First we focus on bearing and frequency residuals with

respect to direct-path and bottom-bounce measurements. Then range,

course and speed residuals are considered in Section 4.2. In Section 4.3

second derivatives of the residuals are determined.

4.1 First derivatives of bearing and frequency residuals

The general vector form of the first derivative of a residual rk(ykIN) is

equal to

rk(YkIN) 1 hk(F(O k G(y N,))) (4.1)

ayNlN Ok aYNlN

Throughout this Chapter we just concentrate on the derivatives of hk

instead of rk(ykIK). According to the rules of Appendix A the following

expression is obtained:

ahk-(YkIN) _ 8G(Y1 1 ) OT aF ahj(y- aN ) (4.2)
8YV.i YNlN k'" 8XklN aYklN

which can also be denoted as

a.z B h 8z*B . -ayIO .-kO (4.3)

where ZkII - hh(YkIN).
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In most cases computational efficiency is improved by calculating the

derivatives from explicit analytic expressions instead of using (4.2) or

(4.3). However (4.2) and (4.3) will serve as a guide to derive the

individual expressions of each element of each type of residual

derivative. First, consider the direct-path bearing estimate b kj. The

result of equation (4.3) is

8b .___ a _.,L T .g 
8

AET 2(X 1 ,,y kL) (4.4)
ayNIN 8yl IN k,ff aXkIN

Further we have

RLIfos b315  -L4R 1 sN b5 I5 ..... 02,2 ..... 02,2

sIs b5 st cos NIN

8
ZXwI v()co C(i) -v()sIN C(.) (4.5)

.................. ......... 02,2

02,2 ..... sl CW cos C(M)

Oq.2 ..... 
0
q,2

Note that (4.5) is a block diagonal matrix with m+l submatrices of

dimension 2 x 2 and one q x q identity matrix on its diagonal. Therefore

it is much more convenient to rewrite (4.4) as a number of expressions

with respect to bearing, range, speed and course of each leg, and each

source frequency:
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% ,cos(b,,) *kB - R I.N bN N R 1

BbkIB - i kB-XIN k.N

KIN co(BB TR kIBC.) (4.6)

lb ON SXB(CNU~ y T(' MA~k
)). O k.N+ cos(C Ni 'kl T) 1

a -NI BN RINR

The result of equations (4.6) is shown in table 4.1.

ab klB _ %I1. cos(b,15 - b kIB)

akiN _ .1 siB(b N,5 - bkIN)
aRNI, R kIB

8 b _ _ k.BJ .

abki., - , )~ cos(b ki. - CI

BI. %jB) I. -

avk 11. L si (b kJ1 - C1(l) i ii

a f0j In

Table 4.1 First derivatives of Direct-path bearing estimate b kIN.

The estimated direct-path frequency equation is denoted by
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fkj-. " fols(l - WL)7  (4.7)
C

where f 0 1,, is the estimate of source frequency f., as a result of the

set 2 . The derivative with respect to y,,, can be derived according to

(4.3). It is however easier to obtain the derivative straight-forward

from

8fadz.. i a ...A..kli + afi (1 - ~kf-(4.8)
ay3'.13  c By313  aysI c

Note that 8f 0 1 w/By 1, is equal to e (m+1)+j where e. is the identity vector

with a unity element at the ith position. Substitution in (4.8) leads to

Of f a? t

-9 -J -0i - a + (1 - kN ) (m l + (4.)
By 31 3  c ayi 3  c

The first term of (4.9) depends on the range-rate derivative klN

ik,-(v(i) - *ssnb + (v'~ - 1,6co

N -N - k bklN (4,10)

tS
i-1) s tk < t(

1 ) 
or - t(

M
)

For the sake of convenient notation we introduce vTA as

VTN (vt 1) 
- iS)cosbk,. - (v(') - 'r)sIwb4" i s i v - X ik" - Y k b k I ( 4 .1 1 )

t (1
' 

s tk < t(') or t, - t
€=
)

Equivalent expressions are
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- )sx bk;3

TA () vk C - ')cos bkiN

Vilm - (viiskn C;. - )C- bklN
(vicOs C(A)l bk 3s

Differentiation of (4.10) with respect to YxIx leads to

-vhbkl s + vki nb - nnTY. ANI YArM
By kIN Mi i 1 By1 3

+ vis(b ,, , .....-. )

+ no o s( b k N , I N)

(4.12)

a8 TANI ab r
.ILLI + v(') cos (b IN N~' i

sixsb -(bk .. yNl N

Note that C()) - C(;) for all k since the TS ccurse at leg i

remains constant. The result Is a function of the bearing derivatives:

TAN;I + vi- Mni) e0~
8731, - VhN v ,s(b kiN CHIN~ 21+1

-( i))
co(b iN - C IN) *21+2

(4.13)

Bv ~ ~ ~ ,, -o * bh3 + s(b - C(')) a

yslv i kiN sIN 2141

- s15(bhs - C) 21+2

Substituting the bearing derivatives of Table 4.1 in (4.13) leads to the

result summarized in Table 4.2.
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!S,- Olin TAX S

Bf f ViWN xii (bw - bI)

ac - 12L, Nmi sI(bkIK - IN

t : t, < t or t k-

,.I .. -k1,. Jcos (b kN C(1)
c RkIK l Kl

co(b kIN K .(ill

t t11 : < t)or tk -~

f V~1 TAX U
+ oils2! il k K siNlb N - C"I)

c RkiK il Kl

8Cr Kill ki I k.K cos (b kN il -N'I

tk~ :s t'-' or tk> t

8vl 1. ill SIN(bkIN - ",)

~tk s l' or t, > t'

ki'kill

nfkll - 0 i-
af01 llp

Table 4.2 First derivatives of direct-path frequency estimate fkjINl



TM1 report

Page
36

4.2 First derivatives of range, course and speed.

The first derivatives of the course and speed estimates are obtained

straight forward:

8CMI~
l

- y i+1 (4.14)

-e2i+2

ay511,

where e is the identity vector with a unity element at the jth

position.

The Range derivatives are obtained by applying the general equation

(4.3):

-. ii*T.j (4.15)
x y k.N

where

- [ sN bkIN cosb kI3  0 ..... 0 ]1 (4.16)
8kII

Carrying out the matrix multiplications leads to the results in Table

4.3.
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. -PRIX sza(b N - bk1N)
8bNi l

- cos(bxi,- bkIN)
89R 11,

(Rk)N v ( b --- CM)
a CN() " kN' N PI'~~ I - nN

/

INal i-I. m

- -_T) cos(bk,,- C(') i

8foI1

Table 4.3 First derivatives of Range estimate RkIN .

4.3 First Derivatives of Bottom-bounce bearing and frequency

The bottom-bounce bearing and frequency derivatives are obtained from

the BB-expressions of Section 2.4:

CP 00+ AnC= CsP,I k 8k osk

b -s - (4.17)

Ck - -wOS OSk -5 fi;k < 0

The variable %,, is defined as

- - (4.18)W+D2
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in correspondence to the definitions in (2.21) and (2.19)") .

Similar, the bottom-bounce frequency estimate is equal to

f~ -j f r.,.-
c

(4.19)

The derivative of b can be expressed as

8bBB 8AR=os(u) ab 4o, 'at 1RI

' u - - [ kj&'ff kIN y 1 lI3

8Ys]" au - ksl t 8yVIIN 3 kSRki, ayYIN (4.20)

where u - ak1N cos 5k (.N and

A Ccos (u) -i
(4.21)au (l l I. C .S (b k I ) ) /2

Further

RB B (4.22)
8akI. (R:1 + D

2 ,)12

The range derivative in (4.20) can be found from table 4.3. Hence the

result can be found from

8'E b" 8b 2Ub 8%b'5
a.-kJV 31JI L. + -killkI

8yX13  bk15 YkIN 8a kil BakI, 8 Ykjl (4.23)

1) Remember that we still eese D Ts-D to be zero. Note that when DTs-Do Is substantial

large, we also have to reformulate the direct-peth besting end frequency equatlons by

using the bottom-bounce equationes eand replace DR. by "Dp.
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where

,-ki ah IWSN(iklJ)sINd
abklM (1-at coa

2
(bk k))

1
/
2

cW( l ) /2 (4.24)la klt (i.. :It, Cos (b k i I

BB
9R kN ( IN+ D2

S)3/2

The direct-path bearing and the range derivatives can be found from the

tables 4.1 and 4.3 respectively. There is one trivial case:

UBB
'- 0 j - 1. q (4.25)afoj IN

8f! 1

!I
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The results have been sum-marized in Table 4.4

.6kIII b k IN - C

Ob
5  cI S'(6 I N) S-pId

abRkI (R~kIN + 4 d2) 1

abl"41Tbi .

8b55N Cb'5  8 kI 8'5 a

aabIN 8b' abk IN -COS_ kbIN

ak"N _ bI1 ~ O~I1 I ~

abR ab"ab + B a;k Rc'

thu WI bkN RIM akNa kI bIN

ab" b' b,. 13
kIN - -kN + -k.a I .~L

Table 4.4 First De i a e of B tt mb ou c ea i

ThekI BB frqunc IN can .be writen aCl functiNoftesue

freuecyf 0 13 the,) esate rqec k andtefco
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fall fOj k~(kl (4.26)
kil. OJI ' OIN~fjlN oJIs

Remember that f is equal to fO' if D is zero!fkJIl fkill D
The first derivative can be calculated straightforward by using Table

4.2 and 4.3:

a a fBB ±t~L

BYN15  ai y~15  c BRkIN BYN1N

+ (1-a IN )~uk(4.27)

The result is shown in Table 4.5.

Table 4.2 Table 4.4, Table 4.3
4 4 4

afM a aR,

-RI ak15 B c BRkIN BbsIN

BEN !&E fOIiN a'I a Rk~
-CI act,, CR1  oil ac."k ) B~

IN BkIN IN51

!&41 ___ fO~kIN akIN aRkI

ac 1'c INsBCt

BE"N ciI!- Ol I k! ki

Table 4.5 First Derivatives of Bottom-bounce frequency.
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4.4 Second derivatives of range, bearing and frequency residuals

The second derivatives of direct path and bottom-bounce bearing and

frequency estimates are obtained from the Tables 4.1 through 4.5 of the

previous sections. First we focus on direct path derivatives. From the

first order derivative abkI/b1l N in Table 4.1 we obtain

A2bkIN R-- o b Rk N IaI

8"b- - - l cos(ba- b-co 8(. N-cbsb 
N

-

NIN51  R1 5N RkIN a

(4.29)

+ siN(b 1N- bk _)( -'" -
' I

RIN kI . a.

where • indicates one of the estimated variables in YNIN" Note that the

second term is only non-zero if • indicates RNIN. Similar, when * is

equal to b NI the term with 8bi,/8. will become non-zero. Many of the

terms can be expressed easily by using first order derivatives. In this

way the second derivatives can be expressed by:

a2b . 1 + 1 abK ,

8. 8b NlN  RkiN 8by,1  8. R.I. 8bN5 N a.

(4.30)

+ RNIN~ - I ItI fo -Iae,, i a- a.

This procedure is repeated to obtain second derivatives from all the

first derivatives of Table 4.1:
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a kIM SI - z(b 1 - b l)ISa" - RNS INS SINbw-- 
b

IN 
k
IN
) a

.
'

1 ab ab,,
- - cos(bNI- bkl)( k IN - )

RkI a a.

k i ,() cos bk 1 C. a) .

a 'a s p sij" 8 . (4.31)

T(a111

. S s(bk IN- 'WIN

_b --+ .. cos (b khl- CaI) -
82 b kNCi !L

a 
- 0

a. foj

By using the first order derivatives expressions as much as possible the

result in Table 4.6 is obtained.
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82 b 1I Bbkj 1 abk 8RI

a- Bb MIN Rkh, abNN a, RNIi abNN a*
b ab k 8b
aRN a. a.

8
2 b 1 ab 8Rb av.' N
_ _ -IN k. ~k~I !ij

a- ~ ~ ii 8RvNI akN8RI* a.NINI . a

a~b ON 1 ab kI apkI 1!+I _I-L

aC.(. Rv kI aCNI a . I

1 b ab ac"L)

aNI. a. a.

a. af0 N kI -INa

iote: * in an Glaisent of 
7
II

Table 4.6 Second Derivatives of Direct-Path bearing.

In the following the second order derivatives of the direct-path

frequency estimate fk are obtained in a similar way:
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MIN !_1_ N -- TAN cos (bII. - b lil~ 1 kl
8a - 1 A ~ 1 2 kill NR kIll a

1 f 112 V~Tll cos (bul - bk l) aRNIl

R kIN Ca. .

-N' !ULN cos(b,,, - b kda
R kll aC

k~NIll cos(bllll- b kN

By using the first order derivative expressions of Table 4.2 we get:

a
2f k 8Nafu 1 1 %, _ 1 aRk. aoN+ !R
a- 8b IN - bj R INa k 1. a' k j ll V k ill)a

(4.33)
8f Bbk1 ab

+ RNI A1 -MINLE)
+ RlNllap. a- a.

The drivat v vlll/a. can be obtained from (4.13). The elements of

a2 fkIllayllla, are obtained in a similar way:

a8 -jI f 1 !!i 1 af" 1 84FAM
a* 8R11, aRVi, 1 kIll a* ~ OiIl a ill

1 8f 8b Ab
.k.S ll (:n" - =0JJI (4.34)

The elements of a 2fkjjl/8ylljll8C'N are determined as follows:
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a
2f 1f 1 8f av~1 ) f 8b 8v

T
AX

fk1lN ___ OJII + - j k±.I oil A± ki O
a. ac"'1) f0 jI, acN(1 a. VI"' ac(,N a- act(". a-

*-I '-N11 a. LUP k IN ip (4.35)av"I. a. . C kIXaCm"4' a.

Similar, 8
2 fkjl,/8y,1,8v,("' is stated below:

a2f 1 af af f a C4

wfs 0 Isi f i
(4.36)

TAN1 ~~~ 1 P1  f01,IN abkll aVTAN
C R kI VI a. C avN( a.

The derivatives a2fkjI 5 /ayyNa fojN are obtained straight forward from the

range-rate derivatives (4.13). The result is summarized in Table 4.7.
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BEfl af- 1 BRtw 1 BR.I 1 BEAI 1 B T
AN

a- ab11  ab111, RN,, a* RkI, a* f~j a* ~ a.NIN TI,

apNN a. a.

a2E E 1B. 1B 1 Bv TAN
fkJIN f j 1 - R +I 1 ..af 1 "kIN)

a, aRNIN BR111  R 1 1 3.N a' ~ BOI * VINa.

1 BE ab Bb

a. aC"(IN E0j1, ac"IN a. VNi aC", a.

_, 11 a N k N I 111 " - 1 1 N N

c ~ . I v 1  . B

c RkIN aCI1N B.

a
2 
fkAI 1 BEAA BE2A 1 BEi abl, BC"

a -av( E0 11l, aklN(N aBbkl N a , E k, a BvTa

c k1B VINa c Ba ") B.

B. BE041, c B.

Note; * is anelement of YI

Table 4.7 Second DerIvativea of DIrect-Path frequcncy.

Since all bottom-bounce expressions are range dependent it is more

convenient to determine the 20d derivatives of the range NiN Eirst. The

result is stated in Table 4.8.
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ki -RI a. a.
a- ab3o3 n siP(bkI13 - bx11) + RlI,.cos(bl. b,,N) (....J.. ... J.

a- aRN I1 HI a. a.

a. ac,") S!~kI ~'a

ab acl i
(_k__ - J!N's

A 1 abk IN "- -Tk"i( -C')(kl- Ja. av.11) k kill C-i a. a.

Table 4. eodorder Range derivatives.(38

The bottom-bounce bearing derivatives are obtained by differentiation of

the expression (4.23):

-2U a2 b" 8b a2b a2 b

+I ONh ON+ O + N NO
8- c~,,N aa 11 88R111  ky11  a.y, O~akI a.jN8y

We memorize that the first order derivatives in (4.38) are already known

from the Tables 4.1, 4.3 and 4.4. The derivatives a2b~s/a-ab kNand
Anb ca/b8oudfrmkill /befoud fom
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+ (l_ j._2kj.-11 (-j113'Wfik~d 'GNPkll))(4.39)

a. bU 1 a. I O O 1

a. 8 Z~f 8. 1-.~Ilcas2 k~ly"2 )*csC~IE)(4.40)

+ l_2co2fi,-12 !8b

It is obvious that

a. (1aIl 2 
Pkll2  

- OkIN 2pkIN L ,

+ Jkl~klSL-l 
8 bklll

(1q.2k,+1 a.

Substitution in (4.39) leads to

a- siasb kI _:I= p )T-

+ (l-aIlCOS
2
Pkll,)sxu(Pklll) kL -I=P NSN

a. (.ilc(Pllsl(Pkjdl

+
1~ (qnCog 2~ a 1 o( - (4.42)

sxm(PP kaak) ak~f.

(l-0:,j=c2 #kI.) 3
/
2 ~~k Nl a. + akjN=Pktl(lk~ a.
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82bBB 8b act3cs
3

8.khi - 2 2 3 lCI)-Zs(,3 )IN _.kl,..o(,.kl,) k1) (4.43)a.iai OICSPI) kNa. a.

The 2 d derivative 82aklh/8*8RPlI in the 4th term of (4.38) is equal to

- D (4.44)

a. aRk IN (R:1. + D2 )- / . a.

The result is recapitulized in Table 4.9.

8.kb1  (l- IfcoS2#k IN )312 8SN#kN kl . La- 8b klI-N .OZk.3= 1s"Dk" aRl

ab.

A SS" b -k] a ___
-jN (-fcs

2 -1
3 / 2 

(p( ) ...k1 .o 3pL)

+ -k. fi6ki.) (SIN kj) . a. kia

a. akil a.Ii kil aRIN a.
~aON.-3D 2 R aR

MBL flkil. ~kI
a. aRkIl (R h1 + D2 )5 2 a.

2I.~~BB 2.B

a. 8yi, 8- abkIR ay.i. abkl. a.ay,, a.8a%1  a~l3 ayNiN

+ '-[ a %,, aI + !n, a%, aNl
aak18* a I1, 8y1 3 aklN aal, a*. yI

Table 4.9 Second order bottom-bounce bearing derivatives.

The bottom-bounce frequency derivatives are determined from (4.26).

By partial differentiation of fa3 with respect to fo,N' fkJIN and RkIN

we obtain
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Bk"l afBEa B" 2 f Ba 2 BRkly
-kIl kiJ N+ kiln ' 'IPl + .= k

B- By313  B.BfkjIN By,1 , 8 fkjiV 8
*y
8

j B*BR, 1 ByNi3

(4.45)

+ BF B 2 B f B B
2f

+ ~ ..-LI ouR r I +! -. I + - IN~ o~±i
BRkIN B.BY 8I B'fojlx By 31  afojl a'ByN1

The first derivatives in (4.45) are known from the Tables 4.2, 4.3. and

4.5. Moreover B2fkjf/aayIn and B2R, 1 /*ay, 13 are obtained from the

Tables 4.7 and 4.8. The remaining factors to be derived are:

afBB

- fk_ K I .I. (4.46)
aB afkjlN BRkI B"

and

" ( - .Ai) - 2JL.
k"BE kiln BE 0jN kIN -fI 'kinll (4.47)

B- BRkI,, B. a a it .  c a. eRk N

Note that terms with af kin / RkI become zero since we use the partial

derivatives of (4.26) with respect to fkJ 1n and Rkln to obtain (4.45).

The result is stated in Table 4.10.
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Table 4.4 Table 4.3 Table 4.2 Table 4.7

a' kIN' a2ll BfkI

a. 8yl, akIN 8* 8y1l Ii a. 8y1Ni

Table 4.2 Table 4.4 Table 4.3
4 4 4

8. a. a_;11 ay111
Table 4.0 Table 4.3 Table 4.4 Table 4.8

- 'kjN1 'kIl _ akln Lk
c 8. 8R k N 8yNlN 8 1l a.ayNi,

8R kIN a. 2ml+

Table 4.10 Second order bottom-bounce frequency derivatives.

i
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5 CONCLUSIONS

In this report the outline of the MLE method for THA is described. The

method requires some kind of optimization procedure. Since THA problems

are often ill-conditioned a robust numeric optimization method is

required. In [Gaelig Heyling] a Newton-type method is proposed by which

THA problems can be solved very efficiently. This report describes how

numerical experiments can be checked by using the Cramer-Rao bound and

moreover that the MLE may not produce unbiased estimates. Newton-type

methods require first order derivatives of the function to be optimized.

Near the optimum also second order derivative information can be used to

improve the convergence of the method. Although derivative information

may be obtained by using finite differences much computation time is

saved by using the analytic expressions which have been derived in

chapter 4. The experimental results and specific details about the

Newton-type method which we prefer can be found in two related reports

(Gmelig Meyling, Gmelig Meyling and de Vlieger].
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SOME MATRIX DIFFERENTIATION RULES

Suppose x, y, z and a are arbitrary column vectors, M is a matrix, and f

is a scalar function, then the following theorems hold:

(1) If y -M then

dy - Mdx implies dy/dz - M' and conversely

(2) If f(z) - m'x then

df - dm'z - m'dx implies df/dx - m and conversely

(3) If x - uf then

dx - mdf implies dx/df - m' and conversely

(4) dz/dx - dy/dz dz/dy

(5) If f(x) - x'Mz then

df - (dx)'Nx + z'Mdx implies df/dx (M+M')x

and conversely.

(6) df/dxdy - d(df/dy)/dx

(7) If f - x'My then

df - (dx)'My + x'Xdy implies

df/dy - Wx and d2f/dzdy -M

(8) If f - x'Mx then

d f/dx2 -N'+
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B.1

TABLES OF CHAPTER 4

In this appendix the tables with first and second order derivatives are

repeated as a quick look facility for those readers who are only

interested in the results of Chapter 4.

.bkIL. - R~Ncos (b NIN - b kN)

ab 1-kJL. _ - SIN(b NIN - b kII)
aR IN IN

- vI kN cos (b kIK Ni .

ab sxsbkI Ck0

Table 4.1 First derivatives of Direct-path bearing estimate b kIN.
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B.2

afkJIll TA RNI cos (b N - b kI)
aYN c il Iil Nkill

- Oi~ll TAXM8Rlill, - six(b,515 - b k~s)

SiLE - -:o15 V.( siw (b k IN - C.

t : t3k < t or tk - M

-SJ . (b CI -C )

a yNI ) - c kil Is

t t k < tMor t k-

+ 11 VkI T, ,N s(b kim - CN"J)

vTAN ('

- - VN kl k.9l cos (b km - CN(I))

tk :5t(' or tk >t

______ ON ki siN(b kls mi'I)

t 9t W)or t k> M

'k I I

BfojI

Table 4.2 First derivatives of direct-path frequency estimate f kjii*
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a~kI.s,,(blx- )
ab NIN Is)

aky- cos (bN I I b kIN)

1
UkIN-

BR"~ - T".. " cs(b - C")

.K kill sin
s.in -) Tk,..IN.,('

aR kIN _ o
af 0 J15

Table 4.3 First derivatives of Range estimate R k.N
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B.4

PIN ~bkIN - Ck0

-! k " f~it, 11) -"CM (P IN)

Obk IN (cz li.COS
2 (pk ))

1 12

-aL 4d 2

aRkIN (RkLN + 4di2)312

Table 4.1 Table 4.3
4 4

ab" 8b MOD I A....J ____ b aN aRk,

21,3D abs" Ab1  SO" a

8R.WIN 8b kIN aptn a~kIN a&ktl a~.31

80" ab" abkl a%,i_1N 1 I - k + _kIN IN
ac'" ab kil acM a-kil, aPkI. ac.~IN SI 'IN

MUDD 8b"D Abl Ab" ac,
'_I N- k ill + =~kIN k.i!8

av,1. a ell '). aI ap i.

Table 4.4 Firat Derivatives of Borrow-bounce bearing.
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Table 4.2 Table 4.4. Table 4.3

BE" BE f ,~kJIM kilY 0- kinI minE ...b sik I a byi p c aB kI y a b l.

B,, . c BR.INa ip, aR,,

aB,1 a- f ak , c aB BRki,

'hillS -' N k 1 OfllFkill _*j~*j

i-i~m

BE," Bf f a%,. -,
BvJ - akin BvJ1 ' 0c9O i

BB
a OIN (1- -

Table 4.5 First Derivatives of Bottom-bounce frequency.

I
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B.6

a
2 b 1 ab a, 1 8bO ~I

a- abN13  RkIN aba11 a. RM abMIN a*

+ RINabki (b,, ab,1
+ RMIN a. a.

a--1 ab a 1 ab Bb b111

a- aR.I. Rk. a;vj a* RNI ab11 a. a.

a 2b kN 1 abk RkN 1 b kNav"i

a- ac, RkI. ac. . - V-0 ac a

av+, al -a a.

Ab 1 ab I N

a. av, Rk1. a,,(', a.

1 8b ab acm'
-Ox ( 1 ki -MI

V'(1 ac,(, a. a.

note: - is *1..went of ~i

Table 4.6 Second Derivatives of Direct-Path bearing.
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a
2
f U B f kJ1 1 aEI - %,+I a~i TAN

8.!&I (8b1 abI. _1 3 8. R 8.. I. 8

a2fkf - f 1 aR k~ + a 1aTA

8* aR511  aR1 5  Rk13 8*fB I a. a.Il

1 a fk .8b 8 b.I

RNIN abN15  a* a.
82f 1 f a" 1 af 8v('

kAIN - + kJiN -NIN

a. l,, ac" ," ac,(,) a. IN' 8C.I a.

fOjIS ab kll ! + V.1) (akIN - ')
c a cj"1 a. SIl a v,,1 a. a.

f v TAN
+ 'OI :I 8 I±k

c Rj 8CII a'

a
2f kJIl 1 i f UI 1!1- _ 1 I 1ab 5 -I

a - av(, fOjjll av, a. vl,, a C,( a. a.

f v~ TAN fb ab 8vR

c RkI. aVII a' av~a

a2f kAisf 1 ik
a- foJN a.

Note: - is 48 eeMBOUt of7,I

Table 4.7 Second Derivatives of Direcr-Path frequency.
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a. 2 bl aN.,.(bkI - b 1 ) + R..,Ico(bkN -NN) ab.,

8- aRb 1 -I a. ~kI MI a. 8.

a 2 Rkin b __ -T~Sx(b - kIN -l,(

a- aRMIN kn ~ a. a.

II
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k. bN ('-%NC-s
2 '8kId) aR k.,, a.

+ khINCOSpk]N(l- 2Iia
a.

kIN - I cos2 R V.31 2 (sxN(pk ).....±I -o kI.s

a. a0kI, a 1 k3' "1 . axl" a.~d8

a2a
OIN I D;. %j. ak
a. ~k . (j.,+ D2

.)512 a.
,2,3 

8R2I a2 N 5

82 bI 3  a8bB ab B 5 Bbk 8bBB a , a%,.
____- kIN. ____+ - k±L O + ON C

a. ay, . ab k , ay,, ab kIN 8 .8;IN, a.8akN aRkI, ayNIN

55B 2 8 BE5  82RI
+ 

8bkIN 8 a k kI%, + kIN aokIN a___

8a .a*RkIN aYNIN 8OklN aRkIN a* ay313

Table 4.9 Second order borrow-bounce bearing derivatives.
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Table 4.4 Table 4.3 Table 4.2 Table 4.7

- t 42L rnkf kAIh

a. ayl,, aRkIN * ay113  'kj a. 811
Table 4.2 Table 4.4 Table 4.3

4 4 4
+ f (!I na %I. ORkI.

a. a. a~kIff aYKIN

Table 4.9 Table 4.3 Table 4.4 Table 4.8
4 4 4 4

8.jI I 8 3 1  O k k8* y

aRk~l a. 2(wI1)+j

Table 4.10 Second order bottom-bounce frequency derivatives.
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This theorem can be proven by defining the vector X as

[e(Z) - Y'
I (C.1)

X - 8L(p(Zly'))

aye

The covariance matrix of X must be non-negative definite:

I Wy )

E(XXT ly,) - WY y3  0 (C.2)

n By

Hence, for any vectors x and y the following quadratic form must be

nonnegative:

zTA z + zT(I + -X(YO))y + yT(I n + aA(yd) + y)x y k 0 (C.3)By3  By3

Assuming that both A. and N are positive definite the minimum of the

left expression is attained for:

-1 OA(Y)
y -- X(I + (C.4)

Sy3

Substituting (C.4) into (C.3) leads to the following condition:
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C.2

BA(y3 ) 1 8~ 1

xT[ A - (I + -- )W- (I +]) x 2 0 (C.5)

Hence, when the estimate has a bias A(y.) the Cramer-Rao theorem changes

into:

Ae (I, + a.X(Y"))-(In + aA(Y$))T (C.6)

ays ay,

If A(yN) is zero, condition (C.6) reduces to (3.28)..
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